Strategies & Qualification methodologies for Visual Inspection

Bram Keymolen 07 June 2018

Strategies & Qualification methodologies for Visual Inspection

- 1. Introduction: Defect categories & definitions
- 2. Qualification methodologies for automated inspection: Strategies and Mindsets
- 3. Quality Control testing of difficult to inspect products

1. Defect categories & definitions

Critical

- may cause a lack of sterility, container integrity or cause serious (life threatening) harm to patients
- e.g. cracks in the container

Major

- may alter the content or the function of the product or might possibly cause non-life threatening harm to patients
- e.g. particles

Minor

- (Cosmetic) defects that are unlikely to affect patient health or product functionality
- e.g. scratches

Overview

URS

• User Requirements

RA EQ

Risk Assessment for the equipment

DQ

Design Qualification / Design review

FAT

• Factory Acceptance Testing, including inspection performance testing

SAT

• Site Acceptance Testing, including vision installation and acceptance testing

Overview

i IQ • Installation Qualification: correct installation of GMP critical components, ...

OQ

• Operational qualification: SOPs, mechanical runs, alarms, fail safe, user mgt, ...

RA def.

Risk Assessment for defects

PQ/PV

- Performance Qualification
- Process validation

2. Qualification Methodologies for Automated Visual Inspection: Strategies and Mindsets Risk Assessment for defects

- What is it used for?:
 - Recipe parameter development:
 - Which defect do we tune the machine for?
 - Input for qualification/validation:
 - Which defect do we qualify?
 - Deviations / CAPA's:
 - In case of deviations during qualification are they acceptable or not?
 - Do we have to implement extra control strategies?

2. Qualification Methodologies for Automated Visual Inspection: Strategies and Mindsets Risk Assessment for defects

- Based on:
 - the severity (classification) of the defect;
 - the occurence;
 - the **detectability**, this includes all control strategies: QC, AQL and (expected) inspection performance of the AI process
 - Example: <u>11. Back-up slide: Risk Assessment Defects</u>

PERFORMANCE QUALIFICATION / PROCESS VALIDATION

Knapp test

• a method which has been developed to evaluate the inspection efficiency of an inspection process/system (semi-automatic or automatic) with a reference inspection method (in most cases manual visual inspection)

Basics:

- All containers which are rejected ≥ 70% by manual visual inspection are considered defects
- Acceptance criteria:
 - The overall inspection efficiency for these defects of automatic visual inspection has to be equal or greater than the inspection efficiency of manual inspection for these defects
- Initially developed for particles. Is and can be used for other defects.

Performance qualification / Process Validation – recommendations

- Regulatory expectation: compare <u>every defect category</u> to Manual Visual Inspection (gold standard)
- Use bracketing approach during PQ/PV for defining which lots should be inspected, based on:
 - Container type (e.g 2 ml vial)
 - Fill level / strength, e.g. lowest and highest fill level
 - Product type (suspension, solution, freeze dry, ...)

- What should be in?:
 - All defects which can be inspected by Al
 - Existing products: based on hystorical data / defect library
 - New products: based on upstream processes or hystorical data of similar products
- Composition: based on hystorical data and criticality
- Assembly:
 - OPTION 1: Real production defects
 - OPTION 2: Artificially and characterized defects
 - For test sets which are compared with MVI:
 - Use invisble ink to mark (UV)
 - Not more than 10 % defects
- Use a logbook for each test set

- Routine operation:
 - Functional test set: clear defects, use to check functionality of machine
 - Reject trending & control limits: for automated inspection, overall reject, per reject station, per camera station and/or area of inspection (e.g. side wall)
 - AQL sampling (ANSI/ASQ Z1.4, ISO2859-1):
 - Critical 0.01 0.1
 - Major 0.1 0.65
 - Minor 1.0 4.0
- Requalification / Revalidation
 - Periodic review of production data, change controls, CAPA's
 - Every 3 to 5 years product specific?

3. Quality Control testing of difficult to inspect products

Introduction

Visual Inspection may have limited adequacy to detect visible particulate matter, due to

- Product characteristics (non-transparent)
- Container characteristics

Guidance Documents

- PDA TR79 Particulate Matter Control in Difficult to Inspect Parenterals
- USP <1790> Visual Inspection of Injections
- USP <1> Injections

3. USP <1790>

"Supplemental testing is required when the nature of the product or container limits visual inspection of the contents..."

- 3.1. 100% Inspection

Different particulate matter types:

- Extrinsic
- Intrinsic
- Inherent
 - Typical aspect of the (biological) product
 - Emulsions / Suspensions
- 5.1.1. EXTRINSIC, INTRINSIC, OR INHERENT PARTICLES

3. USP <1790>

Section	DIP type	Sampling	Method
5.2.1.	Lyophilised product	ANSI/AQS Z1.4 S-3 and S-4	Reconstitution after 100% inspection of cake
5.2.2.	Powder product	ANSI/AQS Z1.4 S-3 and S-4	Reconstitution after 100% inspection of powder
5.2.3.	Amber Containers	N/A (100%)	Increased light intensity Directional lighting from behind (transfer to clear container)
5.2.4.	Translucent Plastic Containers	N/A (100%)	Increased light intensity Directional lighting from behind
5.2.5.	Large Volume Containers	N/A (100%)	Increased inspection time Increased light intensity Directional lighting from behind
5.2.6.	Combination Products	N/A (100%)	Inspection prior assembly Second inspection post assembly if needed

PDA Survey on DIP (3.1)

- All companies do 100% inspection
- Only half of companies perform supplemental destructive testing
- Only 1/3 apply AQL limits <0,1% for DIP
- Sampling plans based on
 - ISO 2859
 - ANSI/ASQ Z1.4
 - Fixed sample sizes

Supplemental (Destructive) Acceptance Sampling and Testing (4.4)

- Only required under USP <790>; not in other pharmacopoeia
- In addition to AQL sampling
- Inspection of contents that is
 - Constituted (dried)
 - Withdrawn (transferred to another container)
- Filtration / Sieving / Panning

Inspection Approaches for DIP Products / Containers / Devices (5.0)

- Non-destructive (100% inspection with modifications) (5.1)
 - Increased light intensity
 - Increased inspection dwell time
 - Illumination variations
 - Magnification
 - Mechanical fixtures
 - And other

Inspection Approaches for DIP Products / Containers / Devices (5.0)

• Destructive (supplemental, based on sampling plan) (5.2)

	Description	Product	Remarks / Process
Method 1	Reconstitution	Lyo & powder	Diluent purity (filtered) MVI for clear solutions
Method 2	Filtration	Reconstituted p. liquids	USP <788-2> 0,8 micron Bigger pore size Only visible particles inspection Viscous product Inherent particles to pass Adapted membrane materials for spectroscopic analysis

• Destructive (supplemental, based on sampling plan) (5.2) - continued

	Description	Product	Remarks / Process			
Method 3	Clarification	Emulsion Suspension Solid excipient	Solvent, acid or base (filtered) MVI for clear solutions or filtration			
Method 4	Transfer / Diluent	Coloured solution Opaque container	Transfer to clear container / dillution !: exclusion by needle !: generation of stopper particles MVI for clear solutions or filtration			
Method 5	Sieve / Mesh	Suspensions (known part size)	Microscopy of retain material 5 – 30 micron sieve (+ part size data)			
Method 6	Panning	Suspensions (broad distr)	Transfer to clean petri dish + microscopy			

• Destructive (supplemental, based on sampling plan) (5.2) - continued

	Description	Product	Remarks / Process
Method 7	Rinse / Flush + filtration	Implantable devices Empty containers Infusion tubing	Rinsing Filtration and microscopic evaluation

END

Thank you for listening

Back-up slide: Risk Assessment Defects

CQA		Defect category	SEVERITY	OCCURENCE	Current control strategy	DETECTION	RPN	Proposed control strategy
Product identity / safety	No wrong product in correct	С	10	1	No strategy in inspection is used to detect this defect	10	100	
	ampoule No wrong ampoule (different size)	С	10	3	AQL sampling	1	30	
	No wrong color ring (with same size)	С	10	1	OPTION 1 Visual inspection when feeding ampoules at infeed, traying ampoules at outfeed. AQL sampling	7	70	
		С	10	1	OPTION 2 100 % automatic inspection of color ring and rejection if number of rings or ring color is wrong. AQL sampling	1	10	
Extractable volume	Too low or too high filling volume according to PPS specifications	С	5	5	No inspection control strategy is used to control this requirement. SPC (IPC) is used in the filling department to control this.	10	250	
	Too low or too high filling volume (outside $\pm 20\%$ in height, not volume)	С	7	5	100 % automatic inspection of filling volume AQL sampling	1	35	
	No empty containers	М	5	7	100 % automatic inspection of filling volume AQL sampling	1	35	

